Search results for "transcription factor"

showing 10 items of 1493 documents

WWOX, a Chromosomal Fragile Site Gene and its Role in Cancer

2006

Allelic imbalances affecting the long arm of chromosome 16 have been extensively reported in the literature as common abnormalities observed in various carcinoma types, As a result of loss of heterozygosity (LOH) studies in breast cancer, we delimited a genomic area within chromosome 16 that demonstrated the highest frequency of abnormalities. This led us to the identification and cloning of WWOX, a candidate tumor suppressor gene (TSG) that spans a fragile region of DNA located at 16q23.3-24.1 (FRA16D: the second most active common chromosomal fragile site in the human genome). This gene encodes a protein that contains two WW domains responsible of protein-protein interactions and a short-…

GeneticsWWOXLoss of heterozygosityChromosome 16Chromosomal fragile sitemedicineCancer researchBiologyCarcinogenesismedicine.disease_causeTranscription factorGeneCandidate Tumor Suppressor Gene
researchProduct

Nitric oxide enhances Th9 cell differentiation and airway inflammation

2014

International audience; Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody.…

CD4-Positive T-LymphocytesInterleukin 2[SDV]Life Sciences [q-bio]Cellular differentiationNitric Oxide Synthase Type IIGeneral Physics and AstronomyMice TransgenicInflammationCell SeparationNitric OxideArticleGeneral Biochemistry Genetics and Molecular BiologyNitric oxideMicechemistry.chemical_compoundEosinophiliaSTAT5 Transcription FactormedicineAnimalsHumansInterleukin 9Cells CulturedInflammationMice Inbred BALB CMultidisciplinarybiologyNitrosylationInterleukin-9Cell DifferentiationGeneral Chemistryrespiratory systemFlow Cytometry3. Good healthCell biologyMice Inbred C57BLchemistryInterferon Regulatory FactorsImmunologyLeukocytes Mononuclearbiology.proteinInterleukin-2Mdm2Tumor Suppressor Protein p53medicine.symptomAntibodymedicine.drugNature Communications
researchProduct

The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma

2014

Interleukin (IL)-31A binds to an heterodimer composed of IL-31 receptor A (IL-31RA) and Oncostatin M Receptor (OSMR). The IL-31/IL-31R complex is involved in the pathogenesis of various skin diseases, including cutaneous T-cell lymphoma. No information is available on the relations between the IL-31/IL-31R complex and B-cell lymphoma. Here we have addressed this issue in follicular lymphoma (FL), a prototypic germinal center(GC)-derived B-cell malignancy. IL-31 enhanced primary FL cell proliferation through IL-31R-driven signal transducer and activator of transcription factor 1/3 (STAT1/3), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation. In contrast, GC B cells d…

MaleSTAT3 Transcription Factormedicine.medical_specialtyCancer ResearchPrimary Cell CultureFollicular lymphomaBiologyParacrine signallingCytosolCell-Derived MicroparticlesInternal medicinemedicineHumansProtein IsoformsPhosphorylationAutocrine signallingLymphoma FollicularCell ProliferationMitogen-Activated Protein Kinase 1B-LymphocytesMitogen-Activated Protein Kinase 3Gene Expression Regulation LeukemicInterleukinsMicrovesicleMedicine (all)Cell MembraneB-LymphocyteGerminal centerOncostatin M receptorInterleukinProtein IsoformReceptors InterleukinHematologyInterleukinMiddle Agedmedicine.diseaseGerminal CenterMolecular biologyCell-Derived MicroparticleEndocrinologySTAT1 Transcription FactorAnesthesiology and Pain MedicineOncologyFemaleSignal transductionNeoplasm GradingProto-Oncogene Proteins c-aktHumanSignal Transduction
researchProduct

Valproate and Short-Chain Fatty Acids Activate Transcription of the Human Vitamin D Receptor Gene through a Proximal GC-Rich DNA Region Containing Tw…

2022

The vitamin D receptor (VDR) mediates 1,25-dihydroxyvitamin D3 pleiotropic biological actions through transcription regulation of target genes. The expression levels of this ligand-activated nuclear receptor are regulated by multiple mechanisms both at transcriptional and post-transcriptional levels. Vitamin D3 is the natural VDR activator, but other molecules and signaling pathways have also been reported to regulate VDR expression and activity. In this study, we identify valproic acid (VPA) and natural short-chain fatty acids (SCFAs) as novel transcriptional activators of the human VDR (hVDR) gene. We further report a comprehensive characterization of VPA/SCFA-responsive elements in the 5…

BioquímicaBiologiaVDR induction; human VDR promoter; valproic acid; SCFA; Sp1.Binding SitesNutrition and DieteticsSp1 Transcription FactorValproic AcidDNAHumansReceptors Calcitriollipids (amino acids peptides and proteins)ChildPromoter Regions GeneticFood Science
researchProduct

Induction of the peroxisome proliferator activated receptor by fenofibrate in rat liver

1992

AbstractThe process of peroxisome proliferation in rodent liver by hypolipidemic compounds and related substances has recently been shown to be receptor-madiated. In the present study, we have examined the effect of oral administration of the strong peroxisome proliferator fenofibrate on the hepatic expression level of the peroxisome proliferator activated receptor (PPAR) in rats. Immunoblots of rat liver cytosols and nuclear extracs using antibodies raised against recombinant PPAR/β-galactosidase fusion proteins revealed a pronounced increase in the amount of PPAR protein in response to fenofibrate treatment. This induction could also be confirmed at the level or RNA by Northern blotting. …

Male1303 BiochemistryReceptors Cytoplasmic and Nuclear10050 Institute of Pharmacology and ToxicologyPeroxisome proliferator-activated receptorPPARMicrobodiesPolymerase Chain ReactionBiochemistryPPAR agonist1307 Cell BiologyMiceCytosol1315 Structural BiologyFenofibrateStructural Biologychemistry.chemical_classificationMice Inbred BALB CFenofibrateOligodeoxyribonucleotidesPeroxisome proliferator-activated receptor alphaFusion proteinmedicine.drugmedicine.medical_specialtyPeroxisome proliferator-activated receptor gammamRNAMolecular Sequence DataBiophysicsPeroxisome ProliferationReceptors Cell Surface610 Medicine & healthBiology1311 GeneticsInternal medicine1312 Molecular BiologyGeneticsmedicineAnimalsNorthern blotMolecular BiologyAntibodyHypolipidemic compoundCell NucleusMessenger RNABase SequenceImmune SeraCell BiologyBlotting NorthernRatsMice Inbred C57BLEndocrinologychemistry570 Life sciences; biologyTranscription Factors1304 BiophysicsFEBS Letters
researchProduct

The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation.

2008

ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodel…

Poly Adenosine Diphosphate RiboseImmunoprecipitationQH301-705.5Poly ADP ribose polymeraseATPaseBlotting WesternBiochemistryChromosomesGeneral Biochemistry Genetics and Molecular BiologySettore BIO/10 - BiochimicaAnimalsDrosophila ProteinsImmunoprecipitationNucleosomeBiology (General)Transcription factorIn Situ Hybridization FluorescencePolymeraseAdenosine TriphosphatasesGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceGenetics and GenomicsPARP ISWI Poly(ADP)ribosylation Chromatin remodellingCell BiologyChromatinISWI PARPNucleosomesChromatinSettore BIO/18 - GeneticaDrosophila melanogasterBiochemistrybiology.proteinPoly(ADP-ribose) PolymerasesGeneral Agricultural and Biological SciencesFunction (biology)Transcription FactorsResearch ArticlePLoS Biology
researchProduct

Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair.

2007

Exposure of stem cells to genotoxins may lead to embryonic lethality or teratogenic effects. This can be prevented by efficient DNA repair or by eliminating genetically damaged cells. Using undifferentiated mouse embryonic stem (ES) cells as a pluripotent model system, we compared ES cells with differentiated cells, with regard to apoptosis induction by alkylating agents forming the highly mutagenic and killing DNA adduct O(6)-methylguanine. Upon treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ES cells undergo apoptosis at much higher frequency than differentiated cells, although they express a high level of the repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Apo…

Pluripotent Stem CellsMethylnitronitrosoguanidineDNA ComplementaryGuanineDNA damageDNA repairCellular differentiationApoptosisBiologyDNA Mismatch RepairModels BiologicalDNA AdductsMiceO(6)-Methylguanine-DNA MethyltransferaseDNA adductAnimalsMolecular BiologyEmbryonic Stem CellsSwiss 3T3 CellsBase SequenceCell DifferentiationCell BiologyDNA MethylationFibroblastsEmbryonic stem cellMolecular biologyDNA-Binding ProteinsMutS Homolog 2 ProteinDNA methylationDNA mismatch repairStem cellE2F1 Transcription FactorDNA DamageCell death and differentiation
researchProduct

In silico characterization of LZTS3, a potential tumor suppressor

2005

Members of the leucine zipper tumor suppressor (LZTS) protein family are thought to play roles in cell growth modulation. The two currently known members were identified by analyzing genomic and chromosomal alterations reported to be either involved or deleted in various types of cancer, suggesting a causative relationship. By means of computational biology, we have now identified a novel member of the LZTS protein family named LZTS3. The corresponding gene was localized to chromosome 20p13 and consisted of three exons. The novel LZTS3 protein demonstrated a high similarity to LAPSER1/LZTS2 and FEZ1/LZTS1, two members of the LZTS family. The conserved FEZ1 domain contains a leucine zipper m…

GeneticsCancer ResearchLeucine zipperOncologyTumor suppressor geneProtein familyIn silicoActivating transcription factorGeneral MedicineBiologyCell cycleFEZ1Transcription factorOncology Reports
researchProduct

Paracrine in vivo inhibitory effects of adipose tissue–derived mesenchymal stromal cells in the early stages of the acute inflammatory response

2015

Abstract Background aims Excessive or unresolved inflammation leads to tissue lesions. Adipose tissue–derived mesenchymal stromal cells (AMSCs) have shown protective effects that may be dependent on the modulation of inflammation by secreted factors. Methods We used the zymosan-induced mouse air pouch model at two time points (4 h and 18 h) to evaluate the in vivo effects of AMSCs and their conditioned medium (CM) on key steps of the early inflammatory response. We assessed the effects of AMSCs and CM on leukocyte migration and myeloperoxidase activity. The levels of chemokines, cytokines and eicosanoids in exudates were measured by use of enzyme-linked immunoassay or radio-immunoassay. In …

MaleCancer ResearchChemokineLeukocyte migrationLeukotriene B4medicine.medical_treatmentInterleukin-1betaImmunologyFluorescent Antibody TechniqueAdipose tissueEnzyme-Linked Immunosorbent AssayInflammationMesenchymal Stem Cell TransplantationLeukotriene B4DinoprostoneMiceParacrine signallingchemistry.chemical_compoundCell MovementParacrine CommunicationLeukocytesmedicineAnimalsImmunology and AllergyGenetics (clinical)Prostaglandin-E SynthasesInflammationTransplantationbiologyInterleukin-6Tumor Necrosis Factor-alphaTranscription Factor RelAZymosanMesenchymal Stem CellsCell BiologyIntramolecular OxidoreductasesAdipose TissueOncologychemistryCyclooxygenase 2Culture Media ConditionedImmunologyCancer researchbiology.proteinCytokinesTumor necrosis factor alphamedicine.symptomProstaglandin ECytotherapy
researchProduct

STAT5 is crucial to maintain leukemic stem cells in acute myelogenous leukemias induced by MOZ-TIF2.

2012

Abstract MOZ-TIF2 is a leukemogenic fusion oncoprotein that confers self-renewal capability to hematopoietic progenitor cells and induces acute myelogenous leukemia (AML) with long latency in bone marrow transplantation assays. Here, we report that FLT3-ITD transforms hematopoietic cells in cooperation with MOZ-TIF2 in vitro and in vivo. Coexpression of FLT3-ITD confers growth factor independent survival/proliferation, shortens disease latency, and results in an increase in the number of leukemic stem cells (LSC). We show that STAT5, a major effector of aberrant FLT3-ITD signal transduction, is both necessary and sufficient for this cooperative effect. In addition, STAT5 signaling is essent…

Cancer ResearchMyeloidOncogene Proteins Fusionmedicine.medical_treatmentArticleMyelogenousMicehemic and lymphatic diseasesmedicineSTAT5 Transcription FactorAnimalsSTAT5Mice Inbred BALB CbiologyGrowth factormedicine.diseaseFlow CytometryHaematopoiesisLeukemiaBlotting SouthernLeukemia Myeloid Acutemedicine.anatomical_structureCell Transformation NeoplasticOncologyCancer researchbiology.proteinNeoplastic Stem CellsSignal transductionStem cellSignal TransductionCancer research
researchProduct